This site is no longer maintained and has been left for archival purposes
Text and links may be out of date
Quite a lot of plant-pathogenic fungi establish a long-term feeding relationship with the living cells of their hosts, rather than killing the host cells as part of the infection process. These pathogens are termed biotrophic [from the Greek: bios = life, trophy = feeding]. Typically, these fungi grow between the host cells and invade only a few of the cells to produce nutrient-absorbing structures termed haustoria. By their feeding acitivities, they create a nutrient sink to the infection site, so that the host is disadvantaged but is not killed. This type of parasitism can result in serious economic losses of crop plants, and in natural environments it can reduce the competitive abilities of the host; indeed, a few biotrophic pathogens have been used successfully as biological control agents of agricultural weeds. In many ways, this type of parasitism is very sophisticated - keeping the host alive as a long-term source of food. This has led some people to suggest that biotrophic parasitism is evolutionarily advanced. But this is clearly not the case in general, because an almost identical type of parasitism is found in the arbuscular mycorrhizal fungi (see Mycorrhizas) which are thought to have developed on the earliest land plants. Here we consider the two most important groups of biotrophic plant pathogens:
A parallel can be made between the behaviour of these fungi and the biotrophic mycoparasites (see Verticillium biguttatum) |
1. Powdery
mildew fungi
Powdery mildew of roses, caused by the fungus Sphaerotheca pannosa. This is a very common disease, familiar to most gardeners, and it is typical of many powdery mildews, where the fungus forms a powdery coating of white spores on the leaf surface. Other common examples in Britain are powdery mildew of hawthorn (Podosphaera oxyacanthae), gooseberry (Sphaerotheca mors-uvae), and cereals and grasses (Erysiphe graminis). All these fungi grow superficially on the host, only penetrating the leaf epidermis. But they extract considerable amounts of plant nutrients through their haustoria, and these nutrients are used for sporulation, leading to rapid epidemic spread of these diseases. |
||
The powdery mildew pathogens are in the
fungal group Ascomycota (ascus-forming
fungi). They produce chains of asexual spores (conidia)
for aerial dispersal, and at the end of the growing
season they can produce small fruiting bodies (ascocarps)
containing the sexual spores (ascospores)
that serve for dormant survival. Figure A (above) shows many separate, localised lesions of Erysiphe graminis on wheat leaves. The conidia from these lesions (C, D, stained with trypan blue) are produced continuously in chains, maturing at the tip of the chain and being wind-dispersed. They are large enough (about 30 micrometres) to impact onto cereal leaves at normal wind speeds (typically 1-2 metres per second) in field conditions (see Airborne Microbes). Figure B shows similar lesions near the end of the growing season. The small black flecks are the ascocarps. The ascocarps of a different fungus (Podosphaera, the powdery mildew fungus of hawthorn) are seen at higher magnification in Figure E. This type of ascocarp is termed a cleistothecium - a closed body containing one or more asci (each with 8 ascospores inside it). The ascospores are released when the cleistothecium wall is ruptured. (For another example, see Thermoascus) |
||
The haustorium
of Erysiphe graminis is highly distinctive (Figure F), consisting of a rounded body with
finger-like projections in a wheat epidermal cell. The
fungus in this Figure was stained with trypan blue, which
also shows the host cell nucleus (n).
The haustoria of E. graminis, like those of all
biotrophic fungi, are not in direct contact with the host
cell contents, because they are surrounded by a membrane
- the extrahaustorial membrane - which
represents a modified form of the host cell membrane (Fig. G).
By digesting the host cell walls with enzymes, it has been possible to isolate "haustorial complexes" consisting of the haustorium and its encasing membrane. Experimental studies on these haustorial complexes of pea powdery mildew have shown that the extrahaustorial membrane lacks ATPase activity (see Figure G) and thus lacks the ability to control the movement of nutrients across this membrane. In contrast, both the haustorial membrane (of the fungus) and the plant cell membrane have normal ATPase activity for driving nutrient uptake. The consequence is that the fungus can take up nutrients from the host cell, with little or no resistance, while the infected host cell can take up nutrients from its neighbours. So there is a one-way flow of nutrients into the haustorium, and from there to the fungal hyphae on the plant surface, where the fungus uses the nutrients for spore production. |
2. Rust fungi The infection behaviour of rust fungi is broadly similar to that of the powdery mildews, involving nutrient absorption by haustoria to support abundant sporulation for epidemic spread. These fungi also get their name from the characteristic sporing stage - in this case the (usually) rust-coloured uredospores which develop in pustules where the fungus erupts through the plant surface. Figure H. Wheat leaf infected by the rust fungus, Puccinia graminis var tritici, showing individual lesions (light coloured haloes on the leaf) with pustules of uredospores in their centres. [Image taken by placing an infected leaf on a flat-bed scanner] |
The life cycle of rust fungi (basidiomycota, related to the toadstool-producing fungi) is often more complex than that of powdery mildews, because some rust fungi need two different types of host to complete their cycle. These hosts are termed the main host and the alternate host. For example, Puccinia graminis var. tritici has wheat as its main host and barberry plants (Berberis species) as its alternate host. There is a correspondingly large number of sporing stages - up to 5 in some cases, as shown below. Figure I. Life cycle of Puccinia graminis var tritici. |
On wheat:
Figures J-L. Puccinia graminis on the cereal host. (J) Pustules of uredospores on a cereal stem. (K) Section of a leaf showing eruption of uredospores through the leaf epidermis (stained with safranin). (L) Section of a leaf later in the season, showing teliospores in place of the uredospores that were produced earlier. |
On barberry:
Figures M-P. Puccinia graminis on the alternate host, barberry. (M) Small lesions on the upper surface of a barberry leaf, with spermogonia in their centres. (N) Section of a spermogonium, showing the minute spermatia (male sexual cells) and the position (arrowhead) where flexuous (female) hyphae arise. (O) Close-up of lower surface of the leaf, showing cup-shaped pustules of aeciospores. (P) Cross section of a leaf showing the aeciospores developing in tightly packed chains from a pad of fungal tissue. |
Some common rust fungi Rust fungi are remarkably common on both crop plants and wild, native plants. On crops they cause serious economic damage, necessitating the use of fungicides. Although Puccinia graminis (black stem rust of cereals) is most important in the USA, Puccinia striiformis (yellow rust) and P. recondita (brown rust) are more important on cereals in Britain. Several other rusts are common in Britain.
Figure Q-R. Blackberry rust, showing pustules of aeciospores on the leaf surface (Q) and the stalked, multicellular aeciospores under a microscope (R). Figure S. Thistle rust. Figure T. A mass of uredospores of birch rust, each about 30 micrometers long and easily impacted onto leaf surfaces during wind-dispersal. |
Figures U,V. Groundsel (Senecio vulgaris), a common weed of open ground. U, whole plant (about 15 cm tall) with rust infection at the base; V, close-up of base, showing uredospore pustules of Coleosporium tussilaginis on the stem and leaves. |
Further reading. Books:
Websites:
|
This site is no longer maintained and has been left for archival purposes
Text and links may be out of date